Publications [Google Scholar]

*: Equal contributions;   : Corresponding author.

Preprints

  1. Learning without Forgetting for Vision-Language Models
    Da-Wei Zhou, Yuanhan Zhang, Jingyi Ning, Han-Jia Ye, De-Chuan Zhan, Ziwei Liu
    arXiv 2023.
    Paper      
  2. Parrot: Multilingual Visual Instruction Tuning
    Hai-Long Sun, Da-Wei Zhou, Yang Li, Shiyin Lu, Chao Yi, Qing-Guo Chen, Zhao Xu, Weihua Luo, Kaifu Zhang, De-Chuan Zhan, Han-Jia Ye
    arXiv 2024.
    Paper       Code
  3. PILOT: A Pre-Trained Model-Based Continual Learning Toolbox
    Hai-Long Sun, Da-Wei Zhou, Han-Jia Ye, De-Chuan Zhan
    arXiv 2023.
    Paper       Code
  4. Streaming CTR Prediction: Rethinking Recommendation Task for Real-World Streaming Data
    Qi-Wei Wang, Hongyu Lu, Yu Chen, Da-Wei Zhou, De-Chuan Zhan, Ming Chen, Han-Jia Ye
    arXiv 2023.
    Paper      

Conference Paper

  1. Expandable Subspace Ensemble for Pre-Trained Model-Based Class-Incremental Learning
    Da-Wei Zhou, Hai-Long Sun, Han-Jia Ye, De-Chuan Zhan
    The IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2024.
    Paper      Code
  2. Continual Learning with Pre-Trained Models: A Survey
    Da-Wei Zhou, Hai-Long Sun, Jingyi Ning, Han-Jia Ye, De-Chuan Zhan
    The 33rd International Joint Conference on Artificial Intelligence (IJCAI), 2024.
    Paper       Code
  3. Multi-layer Rehearsal Feature Augmentation for Class-Incremental Learning
    Bowen Zheng, Da-Wei Zhou, Han-Jia Ye, De-Chuan Zhan
    The 41st International Conference on Machine Learning (ICML), 2024.
    Paper       Code
  4. A Model or 603 Exemplars: Towards Memory-Efficient Class-Incremental Learning
    Da-Wei Zhou, Qi-Wei Wang, Han-Jia Ye, De-Chuan Zhan
    The 11th International Conference on Learning Representations (ICLR), 2023.
    Spotlight Presentation
    Paper      Code
  5. Few-Shot Class-Incremental Learning via Training-Free Prototype Calibration
    Qi-Wei Wang, Da-Wei Zhou, Yi-Kai Zhang, De-Chuan Zhan, Han-Jia Ye
    The 37th Conference on Neural Information Processing Systems (NeurIPS), 2023.
    Paper      Code
  6. BEEF: Bi-Compatible Class-Incremental Learning via Energy-Based Expansion and Fusion
    Fu-Yun Wang, Da-Wei Zhou, Liu Liu, Yatao Bian, Han-Jia Ye, De-Chuan Zhan, Peilin Zhao
    The 11th International Conference on Learning Representations (ICLR), 2023.
    Paper      Code
  7. Preserving Locality in Vision Transformers for Class Incremental Learning
    Bowen Zheng, Da-Wei Zhou, Han-Jia Ye, De-Chuan Zhan
    IEEE International Conference on Multimedia and Expo (ICME), 2023.
    Paper       Code
  8. Forward Compatible Few-Shot Class-Incremental Learning
    Da-Wei Zhou, Fu-Yun Wang, Han-Jia Ye, Liang Ma, Shiliang Pu, De-Chuan Zhan
    IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2022.
    Paper       Code
  9. FOSTER: Feature Boosting and Compression for Class-Incremental Learning
    Fu-Yun Wang, Da-Wei Zhou, Han-Jia Ye, De-Chuan Zhan
    European Conference on Computer Vision (ECCV), 2022.
    Paper       Code
  10. Audio-Visual Generalized Few-Shot Learning with Prototype-Based Co-Adaptation
    Yi-Kai Zhang, Da-Wei Zhou, Han-Jia Ye, De-Chuan Zhan
    The 23rd Conference of the International Speech Communication Association (INTERSPEECH), 2022.
    Paper       Code
  11. Learning Placeholders for Open-Set Recognition
    Da-Wei Zhou, Han-Jia Ye, De-Chuan Zhan
    IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2021.
    Oral Presentation
    Paper       Code
  12. Co-Transport for Class-Incremental Learning
    Da-Wei Zhou, Han-Jia Ye, De-Chuan Zhan
    The 29th ACM International Conference on Multimedia (ACM MM), 2021.
    Paper       Code
  13. Detecting Sequentially Novel Classes with Stable Generalization Ability
    Da-Wei Zhou, Yang Yang, De-Chuan Zhan
    The 25th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD), 2021.
    Paper
  14. Adaptive Deep Models for Incremental Learning: Considering Capacity Scalability and Sustainability
    Yang Yang, Da-Wei Zhou, De-Chuan Zhan, Hui Xiong, Yuan Jiang
    The 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), 2019.
    Paper       Code

Journal Article

  1. Revisiting Class-Incremental Learning with Pre-Trained Models: Generalizability and Adaptivity are All You Need
    Da-Wei Zhou, Zi-Wen Cai, Han-Jia Ye, De-Chuan Zhan, Ziwei Liu
    International Journal of Computer Vision (IJCV), in press.
    Paper       Code
  2. Class-Incremental Learning: A Survey
    Da-Wei Zhou, Qi-Wei Wang, Zhi-Hong Qi, Han-Jia Ye, De-Chuan Zhan, Ziwei Liu
    IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), in press.
    Paper       Code
  3. Few-Shot Class-Incremental Learning by Sampling Multi-Phase Tasks
    Da-Wei Zhou, Han-Jia Ye, Liang Ma, Di Xie, Shiliang Pu, De-Chuan Zhan
    IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 45(11): 12816-12831 (2023).
    ESI Highly Cited Paper
    Paper       Code
  4. Contextualizing Meta-Learning via Learning to Decompose
    Han-Jia Ye, Da-Wei Zhou, Lanqing Hong, Zhenguo Li, Xiu-Shen Wei, De-Chuan Zhan
    IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 46(1): 117-133 (2024).
    Paper       Code
  5. PyCIL: A Python Toolbox for Class-Incremental Learning
    Da-Wei Zhou*, Fu-Yun Wang*, Han-Jia Ye, De-Chuan Zhan
    SCIENCE CHINA Information Sciences (SCIS), 66(9): 19701 (2023).
    Paper       Code
  6. Cost-Effective Incremental Deep Model: Matching Model Capacity with the Least Sampling
    Yang Yang*, Da-Wei Zhou*, De-Chuan Zhan, Hui Xiong, Yuan Jiang, Jian Yang
    IEEE Transactions on Knowledge and Data Engineering (TKDE), 35(4): 3575 - 3588 (2023).
    Paper       Code
  7. RF-Badge: Vital Sign-based Authentication via RFID Tag Array on Badges
    Jingyi Ning, Lei Xie, Chuyu Wang, Yanling Bu, Fengyuan Xu, Da-Wei Zhou, Baoliu Ye, Sanglu Lu
    IEEE Transactions on Mobile Computing (TMC), 22(2): 1170 - 1184 (2023).
    Paper
  8. Learning to Classify with Incremental New Class
    Da-Wei Zhou, Yang Yang, De-Chuan Zhan
    IEEE Transactions on Neural Networks and Learning Systems (TNNLS), 33(6): 2429-2443 (2022).
    Paper
  9. TV100: A TV Series Dataset that Pre-Trained CLIP Has Not Seen
    Da-Wei Zhou, Zhi-Hong Qi, Han-Jia Ye, De-Chuan Zhan
    Frontiers of Computer Science (FCS), 18(5): 185349 (2024).
    Paper       Data
  10. Adaptive Adapter Routing for Long-Tailed Class-Incremental Learning
    Zhi-Hong Qi, Da-Wei Zhou, Yiran Yao, Han-Jia Ye, De-Chuan Zhan
    Machine Learning(MLJ), in press.
    Paper       Code

Domestic Paper

  1. 基于深度学习的类别增量学习算法综述
    周大蔚, 汪福运, 叶翰嘉, 詹德川
    计算机学报, 46(8): 1577-1605 (2023).
    Paper       Code