SSL Benchmark [
Project Page][
Paper][
Code]:
A benchmark for evaluating semi-supervised learning models in open environments. We have corrected the misconceptions in previous research on robust SSL and reshaped the research framework of robust SSL by introducing new analytical methods and associated evaluation metrics from a dynamic perspective. We build a benchmark that encompasses three types of open environments: inconsistent data distributions, inconsistent label spaces, and inconsistent feature spaces to assess the performance of widely used statistical and deep SSL algorithms with tabular, image, and text datasets.