Page History: 人工智能课程主页
Compare Page Revisions
Page Revision: 2018/03/28 20:18
(
Back to homepage)
Information
- 授课对象: 计算机系本科生
- 教室: 仙林校区仙 I-103
- 时间: 8:00-10:00
- 教材: Stuart J. Russell, Peter Norvig. Artificial Intelligence: A Modern Approach (3rd edition), Pearson, 2011.
- 助教: 杨杨
- 总评: 课程作业 + 期末考试
- 课程讨论QQ群:168762353
- 考试:
相关课程
建议同时选修“
机器学习”、“
数据挖掘”、“
模式识别”课
作业
本次课程有四次作业,将基于GVGAI框架,请立即开始熟悉该框架:
http://www.gvgai.net
课程材料
- Introduction (PDF)
- Search 1: Uninformed Search (PDF)
- Search 2: Informed Search (PDF)
- Search 3: Adversarial Search (PDF)
- Search 4: Beyond Classical Search: Bandit, Monte-Carlo Tree Search, General Search and CSP (PDF)
- Knowledge 1: Propositional Logic
- Knowledge 2: First Order Logic
- Knowledge 3: SAT, Planning and Ontology
- Uncertainty 1: Probability & Bayesian Network
- Uncertainty 2: Inference in Bayesian Network
- Learning 1: Supervised Learning & Decision Trees
- Learning 2: Neural Networks
- Learning 3: Principles of Supervised Learning
- Learning 4: Linear Models
- Learning 5: Ensemble Learners
- Learning 6: Feature Processing
- Learning 7: Deep Learning
- Learning 8: Reinforcement learning
- Final: On Artificial Intelligence
slides are derived from Russell's in http://aima.cs.berkeley.edu/instructors.html学术资源