Page History: 人工智能课程主页

Compare Page Revisions



« Older Revision - Back to Page History - Newer Revision »


Page Revision: 2018/06/15 14:35


(Back to homepage)

Information

  • 授课对象: 计算机系本科生
  • 教室: 仙林校区仙 I-103
  • 时间: 8:00-10:00
  • 教材: Stuart J. Russell, Peter Norvig. Artificial Intelligence: A Modern Approach (3rd edition), Pearson, 2011.
  • 助教: 杨杨
  • 总评: 课程作业 + 期末考试
  • 课程讨论QQ群:168762353
  • 考试:

相关课程

建议同时选修“机器学习”、“数据挖掘”、“模式识别”课

作业

本次课程有四次作业,将基于GVGAI框架,请立即开始熟悉该框架:http://www.gvgai.net

课程材料

  1. Introduction (PDF)
  2. Search 1: Uninformed Search (PDF)
  3. Search 2: Informed Search (PDF)
  4. Search 3: Adversarial Search (PDF)
  5. Search 4: Beyond Classical Search: Bandit, Monte-Carlo Tree Search, General Search and CSP (PDF)
  6. Knowledge 1: Propositional Logic (PDF)
  7. Knowledge 2: First Order Logic (PDF)
  8. Knowledge 3: SAT, Planning and Ontology (PDF)
  9. Uncertainty 1: Probability & Bayesian Network (PDF)
  10. Uncertainty 2: Inference in Bayesian Network (PDF)
  11. Learning 1: Supervised Learning & Learning Models (DT, kNN, NB) (PDF)
  12. Learning 2: Principles of Supervised Learning (PDF)
  13. Learning 3: Learning Models (Linear, Neural Networks) (PDF)
  14. Learning 4: Reinforcement Learning (PDF)
  15. Guest lecture: Deep Learning
  16. Learning 5: Feature Processing (PDF)
  17. Final: On Artificial Intelligence (PDF)

slides are derived from Russell's in http://aima.cs.berkeley.edu/instructors.html

学术资源


The end